Factors Affecting HCCI Combustion Phasing for Fuels with Single- and Dual-Stage Chemistry

John E. Dec and Magnus Sjöberg

Sandia National Laboratories

10th Diesel Engine Emissions Reduction Workshop August 30 – September 1, 2004

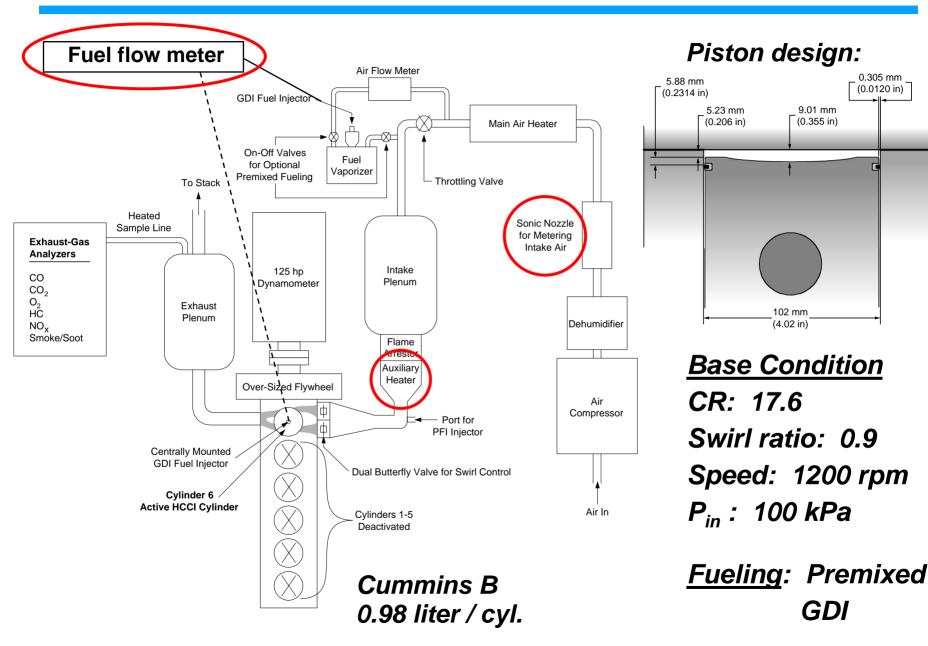
Sponsor: U.S. DOE, Office of FeedomCAR & Vehicle Technologies

Program Manager: Gurpreet Singh

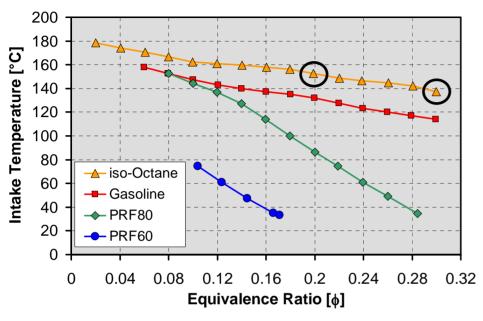
Introduction

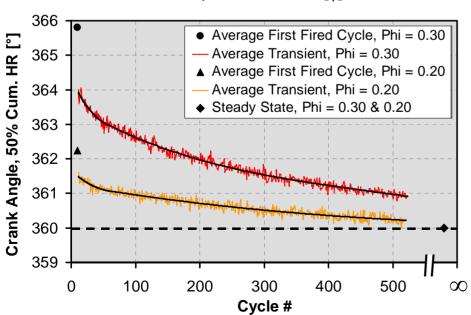
- HCCl engines can provide diesel-like efficiencies and ultra-low NO_X and PM emissions However there are several technical barriers.
- Control of combustion phasing with changes in fueling rate is particularly important.
 - Various control techniques are available: intake heating, VCR, VVT.
 - Ultimately adjust the compressed-gas temperature (T_{CG}) at "ignition."
- Often considered that combustion phasing can be affected by F/A mixture

 Ignition is faster with richer mixtures created by higher fueling rates or charge-mixture inhomogeneities.
- However, as the fuel load is varied, several factors are affected, each of which can affect combustion phasing.
 - Most factors directly or indirectly cause changes in the T_{CG}.
 - Additionally, these factors can sometimes mask changes or lack of changes – due directly to F/A-mixture effects.


Objectives

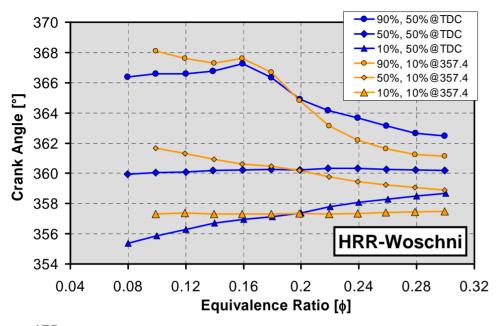
- Identify the factors that cause changes in combustion phasing with changes in fueling rate (fuel-air equivalence ratio, φ).
- Systematically remove the changes due to each factor.
 - Understand the relative magnitude of these factors.
- Isolate the effect of changes in fuel chemistry with equivalence ratio to understand the importance of this factor.
 - Compare behavior of various fuel-types: iso-octane, gasoline, & PRF80.
- Investigate the potential of fuel stratification for controlling combustion phasing.

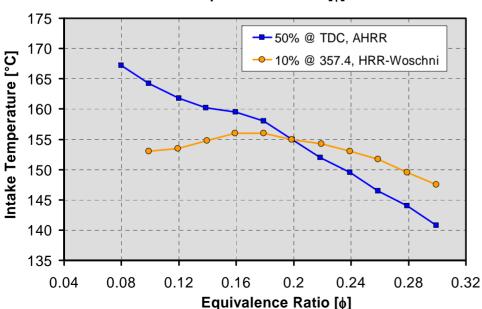

HCCI Engine and Subsystems



Observed Changes with Variation in Fueling

- As fueling (φ) is varied, T_{CG} must be adjusted to maintain combustion phasing.
 - 50%-burn phasing at TDC (indication of performance).
 - Adjust T_{CG} by varying Intake temperature (T_{in}).
- <u>All fuels</u> show a trend of a lower required T_{in} with increased φ.
 - Do richer mixtures autoignite more easily for all fuels?
 - What role do other factors play?
- For example, wall heating and residuals will change with φ.
 - Figure shows fuel-on transients for $\phi = 0.2$ and 0.3, iso-octane (avg. of 10 events).

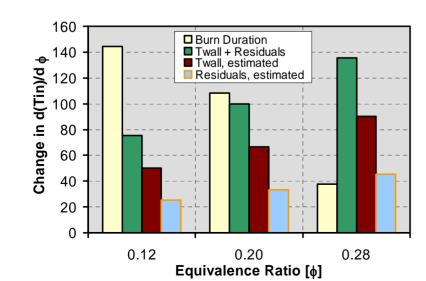

Factors Causing Changes in T_{in} with Fueling



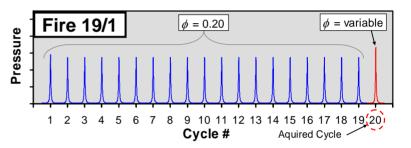
- 1. Combustion duration increases at lower φ. This requires that the start of combustion occur earlier to maintain 50% burn at TDC.
- 2. Wall temperatures increase with increased ϕ , causing higher T_{CG} for a given T_{in} .
- 3. Temperature of residuals increases with ϕ , reducing required T_{in} .
- 4. Heating/cooling during induction changes with ϕ as the ΔT between T_{in} and T_{wall} varies, amount of fuel vaporization, & "dynamic heating."
- 5. Fuel-chemistry effects.
 - Differences in ϕ can affect the chemical-kinetic rates of autoignition.
 - Thermodynamic properties of mixture particularly specific heat $(\gamma = c_p/c_v)$.
- Systematically remove factors 1-4 leaving only fuel-chemistry effects.
 - Evaluate differences in fuel chemistry: <u>iso-octane</u>, gasoline, & PRF80.

1. Changes in Combustion Duration

Base Fuel: Iso-Octane


- Burn duration increases as

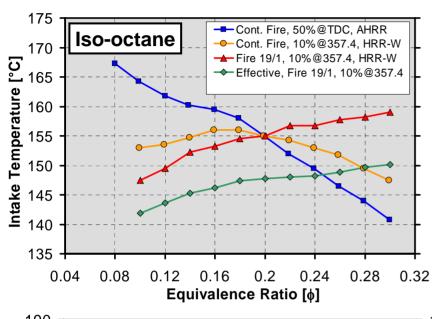
 reduced.
 - Phasing remains very stable –
 Std. Dev < 0.3°CA for 10 & 50%
 burn over range of interest.
 - $-0.1 < \phi < 0.3$ (idle to moderate load).
- Fuel-chemistry effects should correlate with ignition point.
- Select 10% burn as "ignition" pt.
 - Use Woschni correlation to account for heat transfer.
- Retake data with const. 10% burn at 357.4°CA, match φ=0.2.
 - Change in T_{in} with ϕ is greatly reduced, from 24°C to 8.5°C.

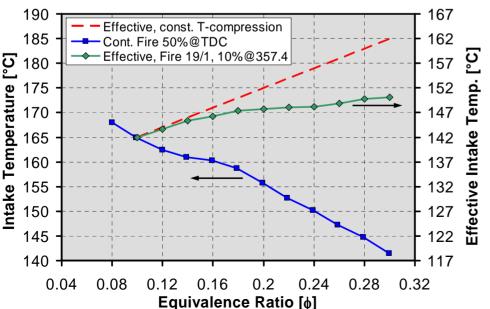

2 & 3. Remove Changes in T_{wall} and Residuals

- Remove changes in T_{wall} & residuals using alternate-firing technique.
 - Hold 10% burn phasing at 357.4°.

- Reverses trend higher T_{in} with higher φ.
- Change in slope between the curves gives relative magnitude of factors.
 - − \$\phi\$ < 0.2, burn duration dominates.
 comb. eff. low: long burn, low heating.
 - $-\phi > 0.2$, opposite is true.
- Separate T_{wall} & residual effects estimated from transient data and fire18/2 data.

SAE 2004-01-0557


4. Heating/Cooling During Induction



- $T_{in} \neq T_{BDC}$ due to heating/cooling during induction.
- Developed technique to estimate $T_{BDC} \Rightarrow Details in SAE 2004-01-1900.$
- Compute changes in T_{BDC} from measured changes in mass flow relative to a base condition.
- Ideal gas law gives: $T_{in,effective} = T_{in,effective,base} \cdot \frac{m_{air,base}}{m_{air+fuel}} \cdot \frac{M_{air+fuel}}{M_{air}} \cdot \frac{P_{in,base}}{P_{in,base}}$
- Base condition: motored $T_{in} = T_{coolant} = 100^{\circ}C$, minimizes heat transfer.
 - − Dynamic heating \Rightarrow T_{BDC, base} = 110°C (from WAVE code, Ricardo).
- Estimate T_{residuals} ≈ average of T_{exhaust} and T_{blowdown}.
- A straightforward procedure. Technique is very sensitive.

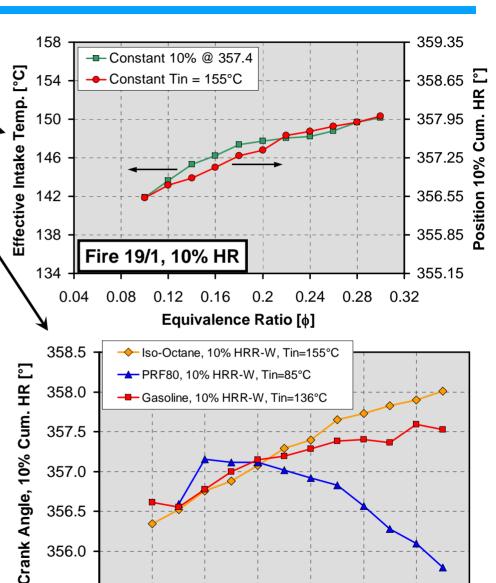
4 & 5. Use T_{BDC} to Isolate Effects of Fuel Chemistry

- For fire19/1, residuals are constant; use effective T_{in} rather than T_{BDC}.
- Effective T_{in} curve shows only changes due to fuel-chemistry.
 - Autoignition kinetics & $\gamma = c_o/c_v$.
- Does a higher φ enhance autoignition for iso-octane?
 - Higher $\phi \Rightarrow$ smaller $\gamma \Rightarrow$ higher T_{in} required for same T_{CG} .
- Lesser slope of Effective T_{in} curve indicates an enhancement with φ.
 - Effect fairly small for iso-octane.
 - > Much less than sum of other four factors.
 - Single-stage ignition fuel.

5. Fuel-Chemistry Effects – Various Fuels

355.5

0.04


0.08

0.12

0.16

- Alternatively, hold T_{in} constant and observe changes in phasing.
 - Trends similar to effective T_{in}.
- The 10%-phasing curves show isolated fuel-chemistry effects.
- <u>Iso-octane</u>: enhancement of ignition kinetics < effect of γ.
- Gasoline: a little more enhancement of ignition kinetics with increased φ than iso-octane.
- PRF80: autoignition kinetics greatly enhanced with φ.
 - Correlates with increasing coolflame chemistry with φ (infers diesel fuel).

0.2

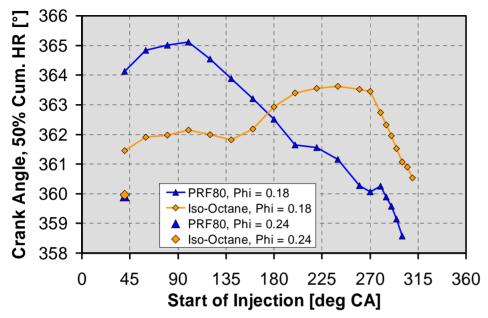
Equivalence Ratio [φ]

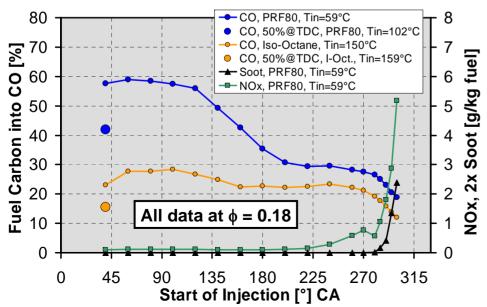
0.24


0.28

0.32

50% Burn Phasing for Constant T_{in} and T_{wall}


- 50% burn is a better indicator of engine performance.
- Fire 19/1 data simulates behavior during a rapid load change before T_{in} and T_{wall} can respond.
 - <u>Iso-octane & gasoline</u>:
 small variation, little
 compensation required.
 ⇒ single-stage ignition
 - PRF80: large variation, significant compensation required. ⇒ dual-stage ignition (cool-flame chem.)



- Data can also be interpreted as indicating the potential for changing combustion phasing with mixture stratification (T_{wall} & residuals constant).
 - PRF80: mixture stratification has a strong potential to control phasing.
 - <u>Iso-octane and gasoline</u>: stratification offers little benefit for phasing control.

Stratification Advances Combustion for PRF-80

- PRF80: simulate load change from φ = 0.24 ⇒ 0.18.
 - $\phi = 0.24$, $T_{in} = 59$ °C for 50% burn at TDC.
 - $\phi = 0.18$, $T_{in} = 102$ °C for 50% burn at TDC.
- Stratification can rapidly adjust phasing for PRF80.
 - Injection at 270°CA, in phase.
 - Also, improves combustion eff., as shown in SAE 2003-01-0752.
- Iso-octane: stratification does not advance phasing.
 - Weak enhancement of autoignition kinetics with φ.
 - Does not overcome charge cooling due to vaporization.

Summary and Conclusions

- In addition to fuel-chemistry, several factors affect the change in intake-temperature required to maintain constant 50%-burn phasing when the fueling rate is varied.
- The relative magnitude of these factors depends on the load range.
 - At low loads, (ϕ < 0.2), changes in burn duration have the largest effect.
 - For higher loads (ϕ > 0.25), changes in T_{wall} are dominant.
- The effect of residuals is relatively small in this engine.
 - They could be the dominant factor in a high-residual engine.
- The effect of F/A mixture (φ) on ig. timing depends strongly on fuel type.
 - Single-stage ignition fuels: iso-octane & gasoline ⇒ effect is small.
 - <u>Dual-stage ignition fuels</u>: PRF80 ⇒ effect is substantial due to cool-flame chemistry. (Similar effect expected for diesel fuel.)
- Mixture stratification can significantly and rapidly advance combustion phasing for PRF80 (or by inference diesel fuel), but not for iso-octane.